BIRZEIT UNIVERSITY
 DEPARTMENT OF COMPUTER SYSTEM ENGINEERING

Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture \#9

Sequential logic gates; Latches and Flip-Flops

Digital Integrated Circuits

Agenda

- Basics of sequentials
- Latch and flop details
- Flop based design
- Other types of sequentials
- Understanding the power implications of flops

Sequential Gates

- Several Uses
- Used to store state of the machine (Like a register)
- Used in finite state machine to represent different states of the machine
- Also used in pipelined machine to designate pipestages
- Always accept clock as an input to synchronize pipestages
- Types:
- Latch (Phase 1/Phase 2)
- Flip-flop (Rising/Falling edge)
- Flavors
- Enabled
- Synchronous Set/Reset
- Asynchronous Set/Reset

Traditional N-Latch

- Level sensitive (Phase 1 open when clk is high)
- Also called N first or phase 1 latch

Traditional N-Latch

Traditional P-Latch

- Level sensitive (Phase 2 open when clk is low)
- Also called P first or Phase 2 Latch

Traditional P-Latch

Positive Edge Flip-flop

- Edge sensitive
- FF captures and drives data on rising edge of clk.
- When clk rises, P latch shuts off, N latch turns on

Master
Slave

Positive Edge Flip-flop

clk

Flop captures
Flop is closed

Negative Edge Flip-flop

- Edge sensitive (FF captures and drives data on falling edge of clk)

Master
Slave

Latch parameters

- Setup time
- Time, before the latch closes, that the data must arrive to guarantee the data is captured correctly after the latch closes
- Hold time
- Time, after the latch closes, that the data can not switch to guarantee the data is captured correctly when the latch closes
- Clk to out delay

- Delay from clk to out when the data is setup before the clk
- Data to out delay
- Delay from data to out when the data arrives after the clk

Traditional N-Latch

Flip-flop parameters

- Setup time
- Time, before the opening clk edge, that the data must arrive to guarantee the data is captured correctly
- Hold time
- Time, after the clk edge, that the data can not switch to guarantee the data is captured correctly
- Clk to out delay
- Delay from clk to out when the data is setup before the clk.
- Note that there is no data to out delay since flops must have data setup to the edge.

Full keeper

- Feedback device has tristated both N and P.
- Writing of output through passgate has no opposition

Pipelining Sequence

- For proper pipelining, must always alternate N -latch and P -latch.
- Flops must be consecutive rising edge flops

What about Latch/Flop boundary?

- What type of latch should be in front of a rising edge flop?

What about Latch/Flop boundary?

- Since in a flop, the master is a P-latch, we MUST have a N -latch in front of a rising edge flop.

Likewise, flop must drive to a P-latch

- On the other hand, since the slave is an nlatch, a rising edge flop must be followed by a p-latch

Flop issues

- Assuming 100ps setup time, skew and clkout delay
- How many paths are there and how many cycles?
- What is max frequency this circuit could run?

Flop Answers

- 2 paths ($A->B$ and $B->C$) each 1 cycle
- $200 \mathrm{ps}+100 \mathrm{ps}=300 \mathrm{ps} .1 / 300 \mathrm{ps}=3.33 \mathrm{GHz}$
- $100 \mathrm{ps}+100 \mathrm{ps}=200 \mathrm{ps} .1 / 200 \mathrm{ps}=5.0 \mathrm{GHz}$
- Max frequency $=3.33 \mathrm{GHz}$

Time borrowing

- Time borrowing is a technique to increase frequency by converting flops to latches.
- Allows amortizing skew, jitter, clk to out and data delays across more than 1 cycle
- How many paths are there and how many cycles?
- What is the new frequency assuming data-out delay is 50ps?

6 paths

- 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).

A
C
D

6 paths

- 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).

Time borrowing Frequency calculations

- 2 paths -> 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).
- A-B, B-C, C-D: 1 cycle path (100ps +100 ps) $=200 \mathrm{ps}=5 \mathrm{GHz}$
- A-C, B-D: 1.5 cycle path $(100+50+100+100)=350$ ps : $1.5 / 350 \mathrm{ps}=4.28 \mathrm{GHz}$
- A-D: 2 cycle path $(100+50+100+50+100+100)=500$ ps : 2/500ps $=4 \mathrm{GHz}$
- New frequency $=4 \mathrm{GHz}$

A-D path explained

Clk->out or setup

Combinational delay

Data->out latch delay

When/Why time borrowing

- 2 advantages of time borrowing
- Allows "borrowing" time from a cycle that has extra margin to a cycle that doesn't
- In our example, the cycle that ran at 3.33 GHz borrows time from the cycle that had 5 GHz
- Allows amortization of setup time and skew over several cycles
- In our example, the 100ps overhead penalty is now over 2 cycles so the per cycle penalty is 50ps

Time borrowing

- Positives:
- Allows some amount of time borrowing without some of the negative of time borrowing
- Very little extra clock load
- No latch explosion
- No RTL change
- Negatives:
- Only allows only a buffer delay of borrowing
- Min delay of the first path has been worsened by 1 buffer delay.
- Skew has increased

Enabled latches

- When enable is a 0 , latch does keeps passgate closed

Synchronous Set latches

- When set is a 1 , when clk is open, latch stores a 1

Synchronous Reset latches

- When r\# is a 0 , when clk is open, latch stores a 0

Asynchronous Set Flops

- When set is a 1 , output immediately changes to a 1
- Does not wait for rising edge of a clock

Mux latches

- Note selects are mutexed qualified clocks

Unprotected latches

- Either no input protection, output protection or both
- Allows converting the inverter to logic gates or customize the inverters normally in a latch
- Loss of output protection require extra caution not to disturb latch node
- To guarantee latch writability, should use a full keeper

Using the Enabled/Set/Reset sequentials

- Problem: How can we improve this?

Use a Reset Latch to reduce logic

- Converts the first inverter in a latch to a nand gate to eliminate 2 gates

Power issues

- Sequentials mean clock power!
- Keep sequentials as small as possible by buffering outputs when timing allows to keep the sizing of the flip-flop small.

- Avoid duplicating/unnecessary flops (Look for opportunities for flop reduction)

Power issues

- Be careful where to select flops
- When fixing speed paths by moving logic from 1 stage to another, watch for flop explosion
- Same issue with flop->latch conversion

Summary

- Know the different types of sequential and the order they need to be used.
- Understanding time borrowing can help solve speed paths in a path at the expense of complexity, clock power
- Select flop to latch conversion or time borrowing flop where appropriate
- ALWAYS think about power. Keep sequential count as low as possible and keep sequential sizes small by buffering outputs.

Basic LATCH Operation

FLOP Delay

- Sum of setup time and Clk-output delay is the only true measure of the performance with respect to the system speed (MAXDELAY)
- Tcycle = Tcq + Tlogic + Tsu + Tskew
- Tlogic contains interconnect delay

Building a FLOP with Two Latches

FLOP Timing Diagrams

Tsu : input setup time Thold : input hold time Tcq : clock to out
Tdata to out $=\mathbf{T s u}+\mathbf{T c q}$

MAXDELAY

Tlogic $<$ Tcycle - (Tcq + Tsu) or Tcycle <= Tlogic + Tcq + Tsu

QZ

- What is this circuit ?

INVERTING MSFF

