

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #9

Sequential logic gates; Latches and Flip-Flops

Digital Integrated Circuits

	Course topics and Schedule	
	Subject	
1	Introduction to Digital Integrated Circuits Design	
2	Semiconductor material: pn-junction, NMOS, PMOS	
3	IC Manufacturing and Design Metrics CMOS	
4	Transistor Devices and Logic Design	
	The CMOS inverter	
5	Combinational logic structures	
6	Layout of an Inverter and basic gates	
	Static CMOS Logic	
8	Dynamic Logic	
9	Sequential logic gates; Latches and Flip-Flops	
	Arithmetic building blocks	
	Parasitic Capacitance Estimation	
	Device modeling parameterization from I-V curves.	
	Interconnect: R, L and C - Wire modeling	
	Timing	
	Power dissipation;	
	SPICE Simulation Techniques (Project)	
	Memories and array structures	
	Midterm	
	Clock Distribution	
	Supply and Threshold Voltage Scaling	
	Reliability and IC qualification process	
	Advanced Voltage Scaling Techniques	
	Power Reduction Through Switching Activity Reduction	2
	CAD tools and algorithms	

Agenda

- Basics of sequentials
- Latch and flop details
- Flop based design
- Other types of sequentials
- Understanding the power implications of flops

Sequential Gates

- Several Uses
 - Used to store state of the machine (Like a register)
 - Used in finite state machine to represent different states of the machine
 - Also used in pipelined machine to designate pipestages
- Always accept clock as an input to synchronize pipestages
- Types:
 - Latch (Phase 1/Phase 2)
 - Flip-flop (Rising/Falling edge)
- Flavors
 - Enabled
 - Synchronous Set/Reset
 - Asynchronous Set/Reset

Traditional N-Latch

- Level sensitive (Phase 1 open when clk is high)
- Also called N first or phase 1 latch

Traditional N-Latch

Traditional P-Latch

Level sensitive (Phase 2 open when clk is low)

0

Ρ

Also called P first or Phase 2 Latch

Positive Edge Flip-flop

- Edge sensitive
 - FF captures and drives data on rising edge of clk.
 - When clk rises, P latch shuts off, N latch turns on

Negative Edge Flip-flop

 Edge sensitive (FF captures and drives data on falling edge of clk)

Latch parameters

- Setup time
 - Time, before the latch closes, that the data must arrive to guarantee the data is captured correctly after the latch closes
- Hold time
 - Time, after the latch closes, that the data can not switch to guarantee the data is captured correctly when the latch closes
- Clk to out delay
 - Delay from clk to out when the data is setup before the clk
- Data to out delay
 - Delay from data to out when the data arrives after the clk

Traditional N-Latch

Flip-flop parameters

- Setup time
 - Time, before the opening clk edge, that the data must arrive to guarantee the data is captured correctly
- Hold time
 - Time, after the clk edge, that the data can not switch to guarantee the data is captured correctly
- Clk to out delay
 - Delay from clk to out when the data is setup before the clk.
- Note that there is no data to out delay since flops must have data setup to the edge.

Full keeper

- Feedback device has tristated both N and P.
- Writing of output through passgate has no opposition

Pipelining Sequence

- For proper pipelining, must always alternate N-latch and P-latch.
- Flops must be consecutive rising edge flops

What about Latch/Flop boundary?

 What type of latch should be in front of a rising edge flop?

What about Latch/Flop boundary?

 Since in a flop, the master is a P-latch, we MUST have a N-latch in front of a rising edge flop.

Likewise, Flop must drive to a P-latch

 On the other hand, since the slave is an nlatch, a rising edge flop must be followed by a p-latch

Flop issues

- Assuming 100ps setup time, skew and clkout delay
- How many paths are there and how many cycles?
- What is max frequency this circuit could run?

Flop Answers

- 2 paths (A->B and B->C) each 1 cycle
- 200ps + 100ps = 300ps. 1/300ps = 3.33GHz
- 100ps + 100ps = 200ps. 1/200ps = 5.0GHz
- Max frequency = 3.33GHz

Time borrowing

- Time borrowing is a technique to increase frequency by converting flops to latches.
 - Allows amortizing skew, jitter, clk to out and data delays across more than 1 cycle
- How many paths are there and how many cycles?
- What is the new frequency assuming data-out delay is 50ps?

6 paths

• 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).

6 paths

• 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).

Time borrowing Frequency calculations

- 2 paths -> 6 paths (A-B, A-C, A-D, B-C, B-D, C-D).
- A-B, B-C, C-D: 1 cycle path (100ps + 100ps) = 200ps = 5GHz
- A-C, B-D: 1.5 cycle path (100 + 50 + 100 + 100) = 350ps : 1.5/350ps = 4.28GHz
- A-D: 2 cycle path (100 + 50 + 100 + 50 + 100 + 100) = 500ps : 2/500ps = 4GHz
- New frequency = 4GHz

A-D path explained

Assume 50ps clk-out and 50ps setup

When/Why time borrowing • 2 advantages of time borrowing

- Allows "borrowing" time from a cycle that has extra margin to a cycle that doesn't
 - In our example, the cycle that ran at 3.33GHz borrows time from the cycle that had 5GHz
- Allows amortization of setup time and skew over several cycles
 - In our example, the 100ps overhead penalty is now over 2 cycles so the per cycle penalty is 50ps

Time borrowing

Positives:

- Allows some amount of time borrowing without some of the negative of time borrowing
 - Very little extra clock load
 - No latch explosion
 - No RTL change
- Negatives:
 - Only allows only a buffer delay of borrowing
 - Min delay of the first path has been worsened by 1 buffer delay.
 - Skew has increased

Enabled latches

• When enable is a 0, latch does keeps passgate closed

Synchronous Set latches

 When set is a 1, when clk is open, latch stores a 1

Synchronous Reset latches

 When r# is a 0, when clk is open, latch stores a 0

Asynchronous Set Flops

- When set is a 1, output immediately changes to a 1
- Does not wait for rising edge of a clock

Mux latches

Note selects are mutexed qualified clocks

Unprotected latches

- Either no input protection, output protection or both
- Allows converting the inverter to logic gates or customize the inverters normally in a latch
- Loss of output protection require extra caution not to disturb latch node
- To guarantee latch writability, should use a full keeper

Using the Enabled/Set/Reset sequentials

• Problem: How can we improve this?

Use a Reset Latch to reduce logic

• Converts the first inverter in a latch to a nand gate to eliminate 2 gates

Power issues

- Sequentials mean clock power!
 - Keep sequentials as small as possible by buffering outputs when timing allows to keep the sizing of the flip-flop small.

Avoid duplicating/unnecessary flops (Look for opportunities for flop reduction)

Power issues

- Be careful where to select flops
 - When fixing speed paths by moving logic from 1 stage to another, watch for flop explosion
 - Same issue with flop->latch conversion

Summary

- Know the different types of sequential and the order they need to be used.
- Understanding time borrowing can help solve speed paths in a path at the expense of complexity, clock power
 - Select flop to latch conversion or time borrowing flop where appropriate
- ALWAYS think about power. Keep sequential count as low as possible and keep sequential sizes small by buffering outputs.

Basic LATCH Operation

FLOP Delay

- Sum of setup time and Clk-output delay is the only true measure of the performance with respect to the system speed (MAXDELAY)
- Tcycle = Tcq + Tlogic + Tsu + Tskew
- *Tlogic* contains interconnect delay

Building a FLOP with Two Latches

FLOP Timing Diagrams

Tsu : input setup time Thold : input hold time Tcq : clock to out Tdata to out = Tsu + Tcq

or

Tlogic < Tcycle – (Tcq + Tsu)

Tcycle <= Tlogic + Tcq + Tsu

QZ

• What is this circuit ?

INVERTING MSFF